

State of the Lake Huron Prey Fish Community in 1999: Progress toward Fish Community Objectives

Jeff Schaeffer, Gary Curtis, Ray Argyle USGS Great Lakes Science Center, Ann Arbor, MI.

Prey Objective

"Maintain a diversity of prey species at population levels matched to primary production and to predator demands"

DesJardine, R.L., T.K. Gorenflo, R.N. Payne, and Source: J.D. Schrouder. 1995. *Fish-Community Objectives for Lake Huron*. Great Lakes Fish. Comm. Spec. Pub. 95-1.

Is the Prey Base Matched to Primary Production?

No apparent changes in primary production

Major changes in food web

- zebra mussel proliferation
- decline in deepwater benthic invertebrates

Effects of food web changes

Lake whitefish emaciation

Improved growth of Saginaw Bay yellow perch

Lake Huron

Fall Survey, 1973-91 12-m trawl

Bloater Survey, 1980-1991 21-m trawl

Combined Survey, 1992-99 21-m trawl

Is the Prey Base Matched to Predatory Demand?

What prey species are present?

What species are eaten?

Can we see effects of predation?

The Prey Community is Diverse: 32 species

Planktivore Biomass Dominated by Three Species

Prey Base dominated by two species!

- Major Chinook Prey items:
 - alewife
 - rainbow smelt
 - sculpins,
 sticklebacks,
 other species

Source: Interagency chinook diet data collated by MSU

Sculpins, Sticklebacks, Troutperch

Bloater Biomass is Cyclic

Rainbow Smelt Biomass

Alewife Biomass

Alewife Biomass: 5 Year Intervals

Alewife abundance

Age-0 Alewife

Alewife: 1990-1999

Rainbow Smelt Biomass: 5 year intervals

Rainbow Smelt Abundance

Alewife as Prey

- Prey availability may depend on age-0 fish
- Year class strength
 - Good year: small prey
 - Poor year: few prey
- Growth may be important
 - Affects prey biomass
 - overwinter survival
 - Size-selective predation

Rainbow Smelt as Prey

- May no longer be a resource for large predators
 - Too rare
 - Very few large fish
- Scarcity may increase pressure on alewife

Conclusions

- Major changes in the food web
- Total planktivore biomass decreasing
 - Decline in bloater not due to predation
 - Declines in R. smelt and alewife consistent
 - with predation, but growth may be important
- Prey size structure declining
 - Few large alewife or rainbow smelt
 - Trends are consistent with predation

Prey Fish Objectives

- May be difficult to attain (numbers)
 - Food Web changes
 - Predator demand high
 - Pelagic planktivores declining
- Other Objectives may be enhanced
 - Greater proportion of native species in biomass
 - Reduced interactions with exotics
 - New approaches now possible